Optimization of a three-layer rotary generator using genetic algorithm to minimize fuel consumption

Author:

Abroshan Hamid,Goodarzi Mahdi

Abstract

Reduction of fuel consumption in power plants is an important issue due to their high rate of fuel usage. In the present article, this was done by optimizing rotary regenerator which have a great role in recovering thermal energy in power stations. Heat transfer and pressure drop through 13 popular flow passages of power plant's rotary regenerators were obtained by CFD simulations. The outcomes were used in a mathematical model of the rotary air heater by considering air leakages. The model was capable of distinguishing between different heating surfaces. Then it was used for optimizing a regenerator by genetic algorithm. Rotational speed and dimensions of all three layers (hot end, intermediate layer, and cold end) were optimized to achieve the highest fuel saving. These dimensions were: hydraulic diameters, heating profile type, and length of each layer. Results showed that redesigning these parameters to the optimal values leads to saving of 443 kg of natural gas per hour for one regenerator. A 10 meter regenerator also had the highest reduction in fuel consumption (660 kg/hr). Finally, the influence of air and hot gas temperatures, and air mass flow rate on fuel saving and optimum values of design parameters was discussed.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotary regenerator: Constructal thermoeconomic optimization;Journal of the Taiwan Institute of Chemical Engineers;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3