Cutting tool wear progression index via signal element variance

Author:

Kasim N. A.,Nuawi M. Z.,A. Ghani J.,Rizal M.,Ahmad M. A. F.,Che Haron C. H.

Abstract

This paper presents a new statistical-based method of cutting tool wear progression in a milling process called Z-rotation method in association with tool wear progression. The method is a kurtosis-based that calculates the signal element variance from its mean as a measurement index. The measurement index can be implicated to determine the severity of wear. The study was conducted to strengthen the shortage in past studies notably considering signal feature extraction for the disintegration of non-deterministic signals. The Cutting force and vibration signals were measured as a tool of sensing element to study wear on the cutting tool edge at the discrete machining conditions. The monitored flank wear progression by the value of the RZ index, which then outlined in the model data pattern concerning wear and number of samples. Throughout the experimental studies, the index shows a significant degree of nonlinearity that appears in the measured impact. For that reason, the accretion of force components by Z-rotation method has successfully determined the abnormality existed in the signal data for both force and vibration. It corresponds to the number of cutting specifies a strong correlation over wear evolution with the highest correlation coefficient of R2 = 0.8702 and the average value of R2 = 0.8147. The index is more sensitive towards the end of the wear stage compared to the previous methods. Thus, it can be utilised to be the alternative experimental findings for monitoring tool wear progression by using threshold values on certain cutting condition.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Fuel Technology,Computational Mechanics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3