Abstract
A finite sequence of open sets L1 L2, … , Ln is called a linear chain if each Li intersects only the L's adjacent to it in the sequence. The finite sequence is a circular chain if we also insist that the first and last links intersect each other. The 1-skeleton of the covering is an arc for a linear chain and a simple closed curve for a linear chain.A compact metric continuum X is called snake-like if for each ∈ > 0, X can be covered by a linear chain of mesh less than ∈. Likewise, X is called circle-like if for each ∈ > 0, X can be irreducibly covered with a circular chain of mesh less than ∈. This definition is more restrictive than that given in (3, p. 210) for there a pseudo-arc is not circle-like but here it is. The present usage is in keeping with definitions of Burgess.
Publisher
Canadian Mathematical Society
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献