Abstract
Let X be an n-square matrix with elements in a field F. The permanent of X is defined by1.1where σ runs over the symmetric group of permutations on 1, 2, … , n. This function makes its appearance in certain combinatorial applications (13), and is involved in a conjecture of van der Waerden (6; 9). Certain formal properties of per (X) are known (1), and an old paper of Pólya (12) shows that for n > 2 one cannot multiply the elements of X by constants in any uniform way so as to convert the permanent into the determinant. In a subsequent paper we intend to investigate this problem for more general operations on X.
Publisher
Canadian Mathematical Society
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献