Abstract
In 1902, F. R. Moulton (12) gave an early example of a non-Desarguesian plane. Its ‘points” are ordered pairs (x, y) of real numbers. Its “lines” coincide with lines of the real affine plane except that lines of negative slope are “bent” on the x-axis, line {y = b + mx}, for negative m, being replaced by {y = b + mx if y ≤ 0, y = [m/2]. [x + (b/m)] if y > 0}. A certain Desarguesian configuration in the classical plane is shifted just enough to vitiate Desargues’ Theorem for Moulton's geometry. The plane is neither a translation plane (“Veblen-Wedderburn” in the sense of Hall (7), p. 364) nor even the dual of one (Veblen and Wedderburn (17). It is natural to ask if the same construction is feasible when real numbers are replaced by elements from an arbitrary field.
Publisher
Canadian Mathematical Society
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献