Abstract
Throughout this discussion R will be an integral domain with quotient field Q and K = Q/R ≠ 0. If A is an R-module, then A is said to be torsion-free (resp. divisible), if for every r ≠ 0 ∈ R the endomorphism of A defined by x → rx, x ∈ A, is a monomorphism (resp. epimorphism). If A is torsion-free, the rank of A is defined to be the dimension over Q of the vector space A ⊗R Q; (we note that a torsion-free R-module of rank one is the same thing as a non-zero R-submodule of Q). A will be said to be indecomposable, if A has no proper, non-zero, direct summands. We shall say that A has D.C.C., if A satisfies the descending chain condition for submodules. By dim R we shall mean the maximal length of a chain of prime ideals in R.
Publisher
Canadian Mathematical Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献