Author:
Ahlbrandt Calvin D.,Hinton Don B.,Lewis Roger T.
Abstract
1. Introduction. Let P(x) be an m × m matrix-valued function that is continuous, real, symmetric, and positive definite for all x in an interval J , which will be further specified. Let w(x) be a positive and continuous weight function and define the formally self adjoint operator l bywhere y(x) is assumed to be an m-dimensional vector-valued function. The operator l generates a minimal closed symmetric operator L0 in the Hilbert space ℒm2(J; w) of all complex, m-dimensional vector-valued functions y on J satisfyingwith inner productwhere . All selfadjoint extensions of L0 have the same essential spectrum ([5] or [19]). As a consequence, the discreteness of the spectrum S(L) of one selfadjoint extension L will imply that the spectrum of every selfadjoint extension is entirely discrete.
Publisher
Canadian Mathematical Society
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献