Abstract
AbstractGiven a minimal action
$\alpha $
of a countable group on the Cantor set, we show that the alternating full group
$\mathsf {A}(\alpha )$
is non-amenable if and only if the topological full group
$\mathsf {F}(\alpha )$
is
$C^*$
-simple. This implies, for instance, that the Elek–Monod example of non-amenable topological full group coming from a Cantor minimal
$\mathbb {Z}^2$
-system is
$C^*$
-simple.
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献