Problems for generalized Monge–Ampère equations

Author:

Enache CristianORCID,Porru Giovanni

Abstract

Abstract This paper deals with some Monge–Ampère type equations involving the gradient that are elliptic in the framework of convex functions. First, we show that such equations may be obtained by minimizing a suitable functional. Moreover, we investigate a P-function associated with the solution to a boundary value problem of our generalized Monge–Ampère equation in a bounded convex domain. It will be shown that this P-function attains its maximum value on the boundary of the underlying domain. Furthermore, we show that such a P-function is actually identically constant when the underlying domain is a ball. Therefore, our result provides a best possible maximum principles in the sense of L. E. Payne. Finally, in case of dimension 2, we prove that this P-function also attains its minimum value on the boundary of the underlying domain. As an application, we will show that the solvability of a Serrin’s type overdetermined problem for our generalized Monge–Ampère type equation forces the underlying domain to be a ball.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Reference18 articles.

1. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature

2. [11] Payne, L. E. , Some applications of “best possible” maximum principles in elliptic boundary value problems, Research notes in Math. 101, Pitman, Boston-London (1984), 286–313.

3. On a real Monge?Amp�re functional

4. A sharp global estimate and an overdetermined problem for Monge-Ampère type equations

5. [12] Philippin, G. A. , Applications of the maximum principle to a variety of problems involving elliptic differential equations. Maximum principles and eigenvalue problems in partial differential equations (Knoxville, TN, 1987), Pitman Res. Notes Math. Ser., 175, Longman Sci. Tech., Harlow, (1988), 34–48.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3