Author:
Gotay Mark J.,Grabowski Janusz
Abstract
AbstractWe prove an algebraic “no-go theorem” to the effect that a nontrivial Poisson algebra cannot be realized as an associative algebra with the commutator bracket. Using it, we show that there is an obstruction to quantizing the Poisson algebra of polynomials generated by a nilpotent basic algebra on a symplectic manifold. This result generalizes Groenewold’s famous theorem on the impossibility of quantizing the Poisson algebra of polynomials on R2n. Finally, we explicitly construct a polynomial quantization of a symplectic manifold with a solvable basic algebra, thereby showing that the obstruction in the nilpotent case does not extend to the solvable case.
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献