Abstract
AbstractIt is known that a unital simple C*-algebra A with tracial topological rank zero has real rank zero. We show in this note that, in general, there are unital C*-algebras with tracial topological rank zero that have real rank other than zero.Let 0 → J → E → A → 0 be a short exact sequence of C*-algebras. Suppose that J and A have tracial topological rank zero. It is known that E has tracial topological rank zero as a C*-algebra if and only if E is tracially quasidiagonal as an extension. We present an example of a tracially quasidiagonal extension which is not quasidiagonal.
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献