Abstract
A ring with involution R is an associative ring endowed with an antiautomorphism * of period 2. One of the first commutativity results for rings with * is a theorem of S. Montgomery asserting that if R is a prime ring, in which every symmetric element s = s* is of the form s — sn(s) (n(s) ≧ 2), then either R is commutative or R is the 2 X 2 matrices over a field, which is a nice generalization of a well-known theorem of N. Jacobson on rings all of whose elements x = xn(x).
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the Symmetric Hypercenter of a Ring;Canadian Journal of Mathematics;1984-06-01
2. Commutativity Conditions on Rings with Involution;Canadian Journal of Mathematics;1982-02-01