Abstract
G. Polya [4] has posed the problem as to whether there are entire transcendental functions of order zero satisfying an algebraic differential equation with rational coefficients. G. Polya himself showed that this is impossible for a first order algebraic differential equation. The general problem is now completely solved. G. Valiron demonstrated an example of a third order algebraic differential equation with an entire transcendental solution of order zero (Theorem 1); V. V. Zimogljad (Theorem 2) proved that every entire transcendental solution of a second order algebraic differential equation is of a positive order. It seems to us expedient to bring these results all together. We give here a proof of Theorem 2 different from and in our view simpler than that of V. V. Zimogljad. Theorem 3 refines the results of G. Polya (and of others, see for example [10]) and establishes an exact lower bound for the order of an arbitrary entire transcendental solution satisfying a first order algebraic differential equation.
Publisher
Canadian Mathematical Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On global non-oscillation of linear ordinary differential equations with polynomial coefficients;Journal of Differential Equations;2016-10
2. Complex Differential Equations;Ordinary Differential Equations;2008
3. Bibliography;Nevanlinna Theory and Complex Differential Equations;1993-01-31
4. A probabilistic approach to the wiman—valiron theory for functions of several complex entire;Complex Variables, Theory and Application: An International Journal;1989-10