Abstract
AbstractLet be a minimal homeomorphism (n ≥1). We show that the crossed product has rational tracial rank at most one. Let Ω be a connected, compact, metric space with finite covering dimension and with . Suppose that ,where Gi is a finite abelian group, i = 0,1. Let β:Ω→Ωbe a minimal homeomorphism. We also show that has rational tracial rank at most one and is classifiable. In particular, this applies to the minimal dynamical systems on odd dimensional real projective spaces. This is done by studying minimal homeomorphisms on X✗Ω, where X is the Cantor set.
Publisher
Canadian Mathematical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献