Abstract
AbstractWe study Hamiltonian actions of compact groups in the presence of compatible involutions. We show that the Lagrangian fixed point set on the symplectically reduced space is isomorphic to the disjoint union of the involutively reduced spaces corresponding to involutions on the group strongly inner to the given one. Our techniques imply that the solution to the eigenvalues of a sum problem for a given real form can be reduced to the quasi-split real form in the same inner class. We also consider invariant quotients with respect to the corresponding real form of the complexified group.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献