Abstract
The theory of associated prime ideals is one of the most basic notions in the study of modules over commutative Noetherian rings. For modules over non-Noetherian rings however, the classical associated primes are not so useful and in fact do not exist for some modules M. In [4] [22] a prime ideal P of a ring R is said to be attached to an R-module M if for each finite subset I of P there exists m ∊ M such that I ⊆ annR(m) ⊆ P. In [4] the attached primes were compared to the associated primes and the results of [4], [22], [23], [24] show that the attached primes are a useful alternative in non-Noetherian rings to associated primes. Several other methods of associating a set of prime ideals to a module M over a non-Noetherian ring have proven very useful in the past. The most common of these is the set Assf(M) of weak Bourbaki primes of M [2, pp. 289-290].
Publisher
Canadian Mathematical Society
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献