Abstract
A GCD-domain is a commutative integral domain in which each pair of elements has a greatest common divisor (g.c.d.). (This is the terminology of Kaplansky [9]. Bourbaki uses the term ''anneau pseudobezoutien" [3, p. 86], while Cohn refers to such rings as "HCF-rings" [4].) The concept of a GCD-domain provides a useful generalization of that of a unique factorization domain (UFD), since several of the standard results for a UFD can be proved in this more general setting (for example, integral closure, some properties of D[X], etc.). Since the class of GCD-domains contains all of the Bezout domains, and in particular, the valuation rings, it is clear that some of the properties of a UFD do not hold in general in a GCD-domain. Among these are complete integral closure, ascending chain condition on principal ideals, and some of the important properties of minimal prime ideals.
Publisher
Canadian Mathematical Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献