Abstract
Abstract
Consider a minimal-free topological dynamical system
$(X, \mathbb Z^d)$
. It is shown that the radius of comparison of the crossed product C*-algebra
$\mathrm {C}(X) \rtimes \mathbb Z^d$
is at most half the mean topological dimension of
$(X, \mathbb Z^d)$
. As a consequence, the C*-algebra
$\mathrm {C}(X) \rtimes \mathbb Z^d$
is classified by the Elliott invariant if the mean dimension of
$(X, \mathbb Z^d)$
is zero.
Publisher
Canadian Mathematical Society
Reference40 articles.
1. Mean dimension, mean rank, and von Neumann–Lück rank
2. Deux exemples sur la dimension moyenne d’un espace de courbes de Brody
3. [34] Szabo, G. , Wu, J. , and Zacharias, J. , Rokhlin dimension for actions of residually finite groups. Ergod. Theory Dyn. Syst. 39(2019), no. 8, 2248–2304.
4. Classification of finite simple amenable
$\mathbf{\mathcal{Z}}$
-stable C*-algebras, II. C*-algebras with rational generalized tracial rank one;Gong;C. R. Math. Acad. Sci. Soc. R. Can.,2020
5. On the Radius of Comparison of a Commutative C*-algebra
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献