On directional Whitney inequality

Author:

Dai Feng,Prymak Andriy

Abstract

Abstract This paper studies a new Whitney type inequality on a compact domain $\Omega \subset {\mathbb R}^d$ that takes the form $$ \begin{align*} \inf_{Q\in \Pi_{r-1}^d(\mathcal{E})} \|f-Q\|_p \leq C(p,r,\Omega) \omega_{\mathcal{E}}^r(f,\mathrm{diam}(\Omega))_p,\ \ r\in {\mathbb N},\ \ 0<p\leq \infty, \end{align*} $$ where $\omega _{\mathcal {E}}^r(f, t)_p$ denotes the rth order directional modulus of smoothness of $f\in L^p(\Omega )$ along a finite set of directions $\mathcal {E}\subset \mathbb {S}^{d-1}$ such that $\mathrm {span}(\mathcal {E})={\mathbb R}^d$ , $\Pi _{r-1}^d(\mathcal {E}):=\{g\in C(\Omega ):\ \omega ^r_{\mathcal {E}} (g, \mathrm {diam} (\Omega ))_p=0\}$ . We prove that there does not exist a universal finite set of directions $\mathcal {E}$ for which this inequality holds on every convex body $\Omega \subset {\mathbb R}^d$ , but for every connected $C^2$ -domain $\Omega \subset {\mathbb R}^d$ , one can choose $\mathcal {E}$ to be an arbitrary set of d independent directions. We also study the smallest number $\mathcal {N}_d(\Omega )\in {\mathbb N}$ for which there exists a set of $\mathcal {N}_d(\Omega )$ directions $\mathcal {E}$ such that $\mathrm {span}(\mathcal {E})={\mathbb R}^d$ and the directional Whitney inequality holds on $\Omega $ for all $r\in {\mathbb N}$ and $p>0$ . It is proved that $\mathcal {N}_d(\Omega )=d$ for every connected $C^2$ -domain $\Omega \subset {\mathbb R}^d$ , for $d=2$ and every planar convex body $\Omega \subset {\mathbb R}^2$ , and for $d\ge 3$ and every almost smooth convex body $\Omega \subset {\mathbb R}^d$ . For $d\ge 3$ and a more general convex body $\Omega \subset {\mathbb R}^d$ , we connect $\mathcal {N}_d(\Omega )$ with a problem in convex geometry on the X-ray number of $\Omega $ , proving that if $\Omega $ is X-rayed by a finite set of directions $\mathcal {E}\subset \mathbb {S}^{d-1}$ , then $\mathcal {E}$ admits the directional Whitney inequality on $\Omega $ for all $r\in {\mathbb N}$ and $0<p\leq \infty $ . Such a connection allows us to deduce certain quantitative estimate of $\mathcal {N}_d(\Omega )$ for $d\ge 3$ . A slight modification of the proof of the usual Whitney inequality in literature also yields a directional Whitney inequality on each convex body $\Omega \subset {\mathbb R}^d$ , but with the set $\mathcal {E}$ containing more than $(c d)^{d-1}$ directions. In this paper, we develop a new and simpler method to prove the directional Whitney inequality on more general, possibly nonconvex domains requiring significantly fewer directions in the directional moduli.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3