Schreier families and -(almost) greedy bases

Author:

Beanland KevinORCID,Chu Hùng ViệtORCID

Abstract

Abstract Let $\mathcal {F}$ be a hereditary collection of finite subsets of $\mathbb {N}$ . In this paper, we introduce and characterize $\mathcal {F}$ -(almost) greedy bases. Given such a family $\mathcal {F}$ , a basis $(e_n)_n$ for a Banach space X is called $\mathcal {F}$ -greedy if there is a constant $C\geqslant 1$ such that for each $x\in X$ , $m \in \mathbb {N}$ , and $G_m(x)$ , we have $$ \begin{align*} \|x - G_m(x)\|\ \leqslant\ C \inf\left\{\left\|x-\sum_{n\in A}a_ne_n\right\|\,:\, |A|\leqslant m, A\in \mathcal{F}, (a_n)\subset \mathbb{K}\right\}. \end{align*} $$ Here, $G_m(x)$ is a greedy sum of x of order m, and $\mathbb {K}$ is the scalar field. From the definition, any $\mathcal {F}$ -greedy basis is quasi-greedy, and so the notion of being $\mathcal {F}$ -greedy lies between being greedy and being quasi-greedy. We characterize $\mathcal {F}$ -greedy bases as being $\mathcal {F}$ -unconditional, $\mathcal {F}$ -disjoint democratic, and quasi-greedy, thus generalizing the well-known characterization of greedy bases by Konyagin and Temlyakov. We also prove a similar characterization for $\mathcal {F}$ -almost greedy bases. Furthermore, we provide several examples of bases that are nontrivially $\mathcal {F}$ -greedy. For a countable ordinal $\alpha $ , we consider the case $\mathcal {F}=\mathcal {S}_{\alpha }$ , where $\mathcal {S}_{\alpha }$ is the Schreier family of order $\alpha $ . We show that for each $\alpha $ , there is a basis that is $\mathcal {S}_{\alpha }$ -greedy but is not $\mathcal {S}_{\alpha +1}$ -greedy. In other words, we prove that none of the following implications can be reversed: for two countable ordinals $\alpha < \beta $ , $$ \begin{align*} \mbox{quasi-greedy}\ \Longleftarrow\ \mathcal{S}_{\alpha}\mbox{-greedy}\ \Longleftarrow\ \mathcal{S}_{\beta}\mbox{-greedy}\ \Longleftarrow\ \mbox{greedy}. \end{align*} $$

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Reference18 articles.

1. Topics in Banach Space Theory

2. Generalized Schreier sets, linear recurrence relation, and Turán graphs;Beanland;Fibonacci Quart.,2022

3. On Schreier unconditional sequences

4. Characterization of 1-greedy bases

5. Methods in the theory of hereditarily indecomposable Banach spaces;Argyros;Mem. Amer. Math. Soc.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3