Large Deformation Analysis of Hyperelastic Continuum with Hexahedral Adaptive Finite Elements

Author:

TEKİN Mustafa1ORCID,ALYAVUZ Bahadır2ORCID

Affiliation:

1. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı

2. GAZİ ÜNİVERSİTESİ

Abstract

The use of hyperelastic materials capable of large deformations, such as elastomeric bearings used to reduce seismic effects, is quite common in civil engineering. Such environments are, in most cases, addressed by numerical solution techniques such as the finite element method. In case of large deformations, nonlinear analysis is used in the solution. In the study presented here, large deformations of a hyperelastic continuum expressed by the Mooney-Rivlin material model are calculated using hexahedral adaptive finite elements. A code was written in MATLAB using the total Lagrangian formulation for the nonlinear adaptive finite element solution. Comparisons were made with Abaqus software to check the consistency of the results obtained from this program. It has been observed that local refinements in the adaptive element mesh occur in the regions where they are needed. Considering the variation of maximum displacement and maximum stress with the number of elements, it has been observed that mesh refinement creates a convergent solution.

Publisher

International Journal of Engineering and Applied Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3