Variational formulation of thermomechanical problems

Author:

Lurie S. A.1,Belov P. A.1,Volkov A. V.1

Affiliation:

1. Institute of Applied Mechanics, Russian Academy of Sciences

Abstract

This article proposes that a 4D space-time continuum is used for building variational thermomechanical continuum models. In order to identify physical constants in reversible processes, physically justified hypotheses were formulated. They are the hypotheses of complementary shear stress, classical dependence of momentum on velocity, and heat flow potentiality (generalized Maxwell–Cattaneo law). The Duhamel–Neumann law was assumed to be classical. In the considered model, the generalized Maxwell–Cattaneo and Duhamel–Neumann laws were not introduced phenomenologically. They were derived from the compatibility equations by excluding thermal potential from the constitutive equations for temperature, heat flow, and pressure. Dissipation channels were considered as the simplest non-integrable variational forms, which are linear in the variations of arguments. As a result, a variational principle that generalizes L.I. Sedov’s principle was developed. It is a consequence of the virtual work principle and termed as the difference between the variation of the Lagrangian of reversible thermomechanical processes and the algebraic sum of dissipation channels. It was proved that for the classical thermomechanical processes, with second-order differential equations, there can only exist six dissipation channels. Two of them determine dissipation in an uncoupled system – in the equations of motion and heat balance. The remaining four channels define coupling effects in coupled problems of dissipative thermomechanics.

Publisher

Kazan Federal University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3