Experiment and Smooth Particle Hydrodynamics Simulation for the Wear Characteristics of Single Diamond Grit Scratching on Sapphire

Author:

Wu Haiyong

Abstract

Abrasive single crystal diamond (SCD) grit is widely used in the machining process of sapphire. The wear of SCD grit has a significant influence on the surface quality of sapphire. In this paper, smooth particle hydrodynamics (SPH) method is employed to reveal the wear mechanism of SCD grit with Steinberg constitutive equation and Grüneisen state equation. The wear morphology, wear volume and scratching forces are measured and analyzed by combination of SPH simulations and experiments. The results show that the scratching forces fluctuate in a certain range and decrease with the increasing of workpiece material removal volume. Different degrees of cleavage and fracture appear in the front and rear of SCD grit. The shear stress and extrusion stress are the main stresses of SCD grit during the scratching process. The wear progress and wear form are mainly determined by the stress state. Different stress state leads to different wear progress of the SCD grit. The SPH method is able to reflect and illustrate the wear characteristics of SCD grit scratching on sapphire.

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of cutting depth and contact area in nanoindenter scratching;Precision Engineering;2024-01

2. Simulation study on mechanical wear of the diamond grain cutting pipeline steel;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3