Comparison of Analytical Method and Different Finite Element Models for the Calculation of Leakage Inductance in Zigzag Transformers

Author:

Dawood Kamran,Isik Fatih,Komurgoz Guven

Abstract

A zigzag transformer is a key segment of the electric power system. The optimal design of the zigzag transformer is important for transformer designers to provide a required return path for earth faults and to ensure proper operation of a power system. The two most important parameters of the zigzag transformers are no-load losses and leakage impedance. The accurate calculation of both factors helps to minimize the overall cost of the transformer. Therefore, the prediction of leakage reactance in the zigzag transformer using analytical or numerical methods is an essential part of the early designing stages of the transformer. This paper provides several two- and three-dimensional finite element models. The main purpose of these models is to evaluate the accuracy of the different models for the calculation of the leakage reactance. An analytical formula and a complete procedure for the calculation of the leakage reactance in the zigzag transformer are also provided, which will help the researchers and transformer designer to optimize this type of transformer. The prototype is also manufactured and tested to verify the accuracy of the analytical method and finite element models for the calculation of the leakage reactance. The simulation and experimental results show that the finite element calculation cannot only obtain accurate leakage reactance values (magnetostatic analysis), but also provides better accuracy in the no-load losses (transient analysis).

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized Gap Positions for Improved Electromagnetic Forces in Dry-Type Transformer Design;2024 6th Global Power, Energy and Communication Conference (GPECOM);2024-06-04

2. Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers;Computation;2024-05-11

3. Analysis of Methods for Calculating Leakage Inductance of a High-Voltage Test Transformer;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29

4. Evaluation of No-Load Losses in the Single-Sheet, Double-Sheet, and Triple-Sheet Step Lap Joints of the Transformer Core;Lecture Notes in Networks and Systems;2024

5. Design and Magnetic Analysis of A Grounding Transformer Compatible with Wind Power System;2023 12th International Conference on Renewable Energy Research and Applications (ICRERA);2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3