Effects of Milling in Hydrogen on Magnesium Hydride with a Hydride-Forming Titanium Additive

Author:

SONG Myoung Youp,CHOI Eunho

Abstract

A hydride-forming element titanium (Ti) was selected as an additive to improve the hydrogen uptake and release properties of MgH2. The hydrogen uptake and release properties of three Ti-added MgH2 alloys [named MgH2-xTi (x = 6, 12, and 15)] prepared by milling in hydrogen (reactive mechanical grinding) were investigated and those of MgH2-12Ti were studied in more detail because it had the highest initial hydrogen uptake and release rates and the largest quantities of hydrogen absorbed and released for 60 min. At the cycle number, n, of one (n = 1), MgH2-12Ti absorbed 4.01 wt.% H for 2.5 min and 6.39 wt.% H for 60 min at 573 K in 12 bar H2, having an effective hydrogen storage capacity of 6.39 wt.%. MgH2-12Ti released 0.44 wt.% H for 2.5 min and 1.86 wt.% H for 60 min at 593 K in 1.0 bar H2. γ-MgH2, TiH1.924, and MgO were formed during reactive mechanical grinding. We believe that the brute forces and tensile, compressive, or shear stresses, which are applied to the materials during reactive mechanical grinding, introduce imperfections, fabricate cracks, expose fresh and clean surfaces, decrease the particle size, and disperse the additive among the particles. The γ-MgH2, TiH1.924, and MgO formed during reactive mechanical grinding and their pulverization during reactive mechanical grinding are believed to make these effects stronger.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3