High-Temperature Oxidation Performance of 4Cr4Mo2NiMnSiV Hot Die Steel

Author:

HAN Renheng,LI Ning,BAO Ziming,HU Xinjian,ZHANG Hexin,ZHAO Chengzhi

Abstract

A new type of hot working die steel was designed by using JMatPro, and high-temperature oxidation tests were carried out in the ambient atmosphere at 600 ℃ and 700 ℃. The heat treatment process and oxidation mechanism of the designed 4Cr4Mo2NiMnSiV steel were studied in detail. XRD, SEM and EDS were used to analyze the crystallographic phases, surface and cross-section morphologies of the oxide films. The results show that the main phases in the 4Cr4Mo2NiMnSiV steel were γ and α + δ. During the high-temperature oxidation, oxidation of the Fe outer layer and Cr inner layer occurred. After oxidation at 600℃, the surface oxidation layer comprised a monolayer with an uneven morphology. The surface oxide film had two layers after oxidation at 700℃. The outer oxide layer mainly contained Fe2O3 and Fe3O4, while the inner oxide layer mainly contained Cr2O3. The microstructure was relatively regular and had a significant effect on the protection of the metallic matrix. When oxidized, the 4Cr4Mo2NiMnSiV alloy steel easily formed protective layers, such as Cr2O3 and SiO2, so that the test steel had excellent oxidation resistance at high temperatures.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3