Rainfall Forecast for the Municipality of Vitória de Santo Antão – PE

Author:

Cunha Ana Luiza XavierORCID,Lima Karina Paula Barbosa de AndradeORCID,De Holanda Romildo MorantORCID,De Medeiros Raimundo MainarORCID,De França Manoel VieiraORCID,Saboya Luciano Marcelo FalleORCID,Moraes Alex SouzaORCID,Rocha Liliane GuimarãesORCID

Abstract

Purpose: Carry out a forecast of rainfall in the municipality of Vitória de Santo Antão, Pernambuco, considering the years 2019 to 2022.   Theoretical framework: The stationarity of the data can be evaluated using the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test, for trends, the Mann-Kendall test, and for forecasting, the Box-Jenkins methodology, with the model (ARIMA).   Method: The data used were rainfall records from station 26 of the Pernambuco Water and Climate Agency (APAC), located in the municipality itself. Daily values from 1970 to 2018 were analyzed. Statistical analysis was performed using the KPSS, Mann-Kendall and Box-Jenkins tests.   Results and conclusion: It was observed that rainfall significantly above the average occurred in the years 1978, 1986, 2000, 2005 and 2011, all of which were above 1,309 mm. The minimum rainfall series were recorded around 300 to 1,000 mm, with emphasis on the years 1995 to 2003, and between 2014 and 2018. In view of the results obtained, it was concluded that the predicted precipitation values for the municipality of Vitória de Santo Antão for the years 2019 to 2022 were below average (1,309 mm).   Research implications: The study is of fundamental importance, as the impacts of climate change on water resources are strategic for the preparation, implementation and strengthening of public policies associated with the management of water resources.   Originality/value: The models used showed good adjustment to precipitation data, configuring as a useful and practical tool for improving the management of water resources in the municipality.

Publisher

RGSA- Revista de Gestao Social e Ambiental

Reference32 articles.

1. A new look at the statistical model identification

2. Assis, J. P., Dourado Neto, D., Manfron, P. A., Martin, T. N., Sparovek, G., & Timm, L. C. (2004). Ajuste de séries históricas de temperatura e radiação solar global diária às funções densidade de probabilidade normal e log-normal, em Piracicaba, SP. Revista Brasileira de Agrometeorologia, 12(1), p. 113-121.

3. Box, G. E. P., Jenkins, G. M, Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

4. Métodos de Previsão de Séries Temporais e Modelagem Híbrida ambos Aplicados em Médias Mensais de Velocidade do Vento para Regiões do Nordeste do Brasil

5. Centro de Gestão e Estudos Estratégicos. (2012). A Questão da Água no Nordeste. Agência Nacional de Águas. Brasília: CGEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3