MILC

Author:

Wang Jianguo1,Lin Chunbin1,He Ruining1,Chae Moojin1,Papakonstantinou Yannis1,Swanson Steven1

Affiliation:

1. University of California

Abstract

Inverted list compression is a topic that has been studied for 50 years due to its fundamental importance in numerous applications including information retrieval, databases, and graph analytics. Typically, an inverted list compression algorithm is evaluated on its space overhead and query processing time. Earlier list compression designs mainly focused on minimizing the space overhead to reduce expensive disk I/O time in disk-oriented systems. But the recent trend is shifted towards reducing query processing time because the underlying systems tend to be memory-resident. Although there are many highly optimized compression approaches in main memory, there is still a considerable performance gap between query processing over compressed lists and uncompressed lists, which motivates this work. In this work, we set out to bridge this performance gap for the first time by proposing a new compression scheme, namely, MILC (memory inverted list compression). MILC relies on a series of techniques including offset-oriented fixed-bit encoding, dynamic partitioning, in-block compression, cache-aware optimization, and SIMD acceleration. We conduct experiments on three real-world datasets in information retrieval, databases, and graph analytics to demonstrate the high performance and low space overhead of MILC. We compare MILC with 12 recent compression algorithms and experimentally show that MILC improves the query performance by up to 13.2× and reduces the space overhead by up to 4.7×.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Aware Adaptive Compression for Stream Processing;IEEE Transactions on Knowledge and Data Engineering;2024-09

2. Scalable Distributed Inverted List Indexes in Disaggregated Memory;Proceedings of the ACM on Management of Data;2024-05-29

3. Revisiting B-tree Compression: An Experimental Study;Proceedings of the ACM on Management of Data;2024-05-29

4. Improving Graph Compression for Efficient Resource-Constrained Graph Analytics;Proceedings of the VLDB Endowment;2024-05

5. Efficient immediate-access dynamic indexing;Information Processing & Management;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3