Performance-optimal filtering

Author:

Lang Harald1,Neumann Thomas1,Kemper Alfons2,Boncz Peter2

Affiliation:

1. Technical University of Munich

2. Centrum Wiskunde & Informatica

Abstract

We define the concept of performance-optimal filtering to indicate the Bloom or Cuckoo filter configuration that best accelerates a particular task. While the space-precision tradeoff of these filters has been well studied, we show how to pick a filter that maximizes the performance for a given workload. This choice might be "suboptimal" relative to traditional space-precision metrics, but it will lead to better performance in practice. In this paper, we focus on high-throughput filter use cases, aimed at avoiding CPU work, e.g., a cache miss, a network message, or a local disk I/O - events that can happen at rates of millions to hundreds per second. Besides the false-positive rate and memory footprint of the filter, performance optimality has to take into account the absolute cost of the filter lookup as well as the saved work per lookup that filtering avoids; while the actual rate of negative lookups in the workload determines whether using a filter improves overall performance at all. In the course of the paper, we introduce new filter variants, namely the register-blocked and cache-sectorized Bloom filters. We present new implementation techniques and perform an extensive evaluation on modern hardware platforms, including the wide-SIMD Skylake-X and Knights Landing. This experimentation shows that in high-throughput situations, the lower lookup cost of blocked Bloom filters allows them to overtake Cuckoo filters.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Bloom: A Tutorial on Future Feature-Rich Filters;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Simple, Efficient, and Robust Hash Tables for Join Processing;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

3. GRF: A Global Range Filter for LSM-Trees with Shape Encoding;Proceedings of the ACM on Management of Data;2024-05-29

4. Wormhole Filters: Caching Your Hash on Persistent Memory;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

5. Sieve: A Learned Data-Skipping Index for Data Analytics;Proceedings of the VLDB Endowment;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3