Probesim

Author:

Liu Yu1,Zheng Bolong2,He Xiaodong1,Wei Zhewei1,Xiao Xiaokui3,Zheng Kai4,Lu Jiaheng5

Affiliation:

1. Renmin University of China, China

2. Sun Yat-sen University

3. Nanyang Technological University, Singapore

4. University of Electronic Science and Technology of China

5. University of Helsinki

Abstract

Single-source and top- k SimRank queries are two important types of similarity search in graphs with numerous applications in web mining, social network analysis, spam detection, etc. A plethora of techniques have been proposed for these two types of queries, but very few can efficiently support similarity search over large dynamic graphs, due to either significant preprocessing time or large space overheads. This paper presents ProbeSim , an index-free algorithm for single-source and top- k SimRank queries that provides a non-trivial theoretical guarantee in the absolute error of query results. ProbeSim estimates SimRank similarities without precomputing any indexing structures, and thus can naturally support real-time SimRank queries on dynamic graphs. Besides the theoretical guarantee, ProbeSim also offers satisfying practical efficiency and effectiveness due to non-trivial optimizations. We conduct extensive experiments on a number of benchmark datasets, which demonstrate that our solutions outperform the existing methods in terms of efficiency and effectiveness. Notably, our experiments include the first empirical study that evaluates the effectiveness of SimRank algorithms on graphs with billion edges, using the idea of pooling.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HitSim: An Efficient Algorithm for Single-Source and Top-k SimRank Computation;Information;2024-06-12

2. Fast computation of General SimRank on heterogeneous information network;Discover Computing;2024-05-21

3. All-Pairs SimRank Updates on Dynamic Graphs;2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2023-12-21

4. Efficient Single-Source SimRank Query by Path Aggregation;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

5. ClipSim: A GPU-friendly Parallel Framework for Single-Source SimRank with Accuracy Guarantee;Proceedings of the ACM on Management of Data;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3