Merging what's cracked, cracking what's merged

Author:

Idreos Stratos1,Manegold Stefan1,Kuno Harumi2,Graefe Goetz2

Affiliation:

1. CWI, Amsterdam

2. HP Labs, Palo Alto

Abstract

Adaptive indexing is characterized by the partial creation and refinement of the index as side effects of query execution. Dynamic or shifting workloads may benefit from preliminary index structures focused on the columns and specific key ranges actually queried --- without incurring the cost of full index construction. The costs and benefits of adaptive indexing techniques should therefore be compared in terms of initialization costs, the overhead imposed upon queries, and the rate at which the index converges to a state that is fully-refined for a particular workload component. Based on an examination of database cracking and adaptive merging, which are two techniques for adaptive indexing, we seek a hybrid technique that has a low initialization cost and also converges rapidly. We find the strengths and weaknesses of database cracking and adaptive merging complementary. One has a relatively high initialization cost but converges rapidly. The other has a low initialization cost but converges relatively slowly. We analyze the sources of their respective strengths and explore the space of hybrid techniques. We have designed and implemented a family of hybrid algorithms in the context of a column-store database system. Our experiments compare their behavior against database cracking and adaptive merging, as well as against both traditional full index lookup and scan of unordered data. We show that the new hybrids significantly improve over past methods while at least two of the hybrids come very close to the "ideal performance" in terms of both overhead per query and convergence to a final state.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-tuning Database Systems: A Systematic Literature Review of Automatic Database Schema Design and Tuning;ACM Computing Surveys;2024-06-29

2. Optimizing the B+tree Index with Hotness Awareness and Adaptivity;Lecture Notes in Computer Science;2024

3. Efficient Coverage Query Over Transition Trajectories;Lecture Notes in Computer Science;2024

4. HAD B+-Tree: A Hotness-Aware Adaptive B+-Tree for SSD/HDD-Based Hybrid Storage Architecture;2023 2nd International Conference on Sensing, Measurement, Communication and Internet of Things Technologies (SMC-IoT);2023-12-29

5. Morphtree: a polymorphic main-memory learned index for dynamic workloads;The VLDB Journal;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3