YADING

Author:

Ding Rui1,Wang Qiang1,Dang Yingnong1,Fu Qiang1,Zhang Haidong1,Zhang Dongmei1

Affiliation:

1. Microsoft Research, Beijing, China

Abstract

Fast and scalable analysis techniques are becoming increasingly important in the era of big data, because they are the enabling techniques to create real-time and interactive experiences in data analysis. Time series are widely available in diverse application areas. Due to the large number of time series instances (e.g., millions) and the high dimensionality of each time series instance (e.g., thousands), it is challenging to conduct clustering on large-scale time series, and it is even more challenging to do so in real-time to support interactive exploration. In this paper, we propose a novel end-to-end time series clustering algorithm, YADING, which automatically clusters large-scale time series with fast performance and quality results. Specifically, YADING consists of three steps: sampling the input dataset, conducting clustering on the sampled dataset, and assigning the rest of the input data to the clusters generated on the sampled dataset. In particular, we provide theoretical proof on the lower and upper bounds of the sample size, which not only guarantees YADING's high performance, but also ensures the distribution consistency between the input dataset and the sampled dataset. We also select L 1 norm as similarity measure and the multi-density approach as the clustering method. With theoretical bound, this selection ensures YADING's robustness to time series variations due to phase perturbation and random noise. Evaluation results have demonstrated that on typical-scale (100,000 time series each with 1,000 dimensions) datasets, YADING is about 40 times faster than the state-of-the-art, sampling-based clustering algorithm DENCLUE 2.0, and about 1,000 times faster than DBSCAN and CLARANS. YADING has also been used by product teams at Microsoft to analyze service performance. Two of such use cases are shared in this paper.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3