Distributed join algorithms on thousands of cores

Author:

Barthels Claude1,Müller Ingo1,Schneider Timo1,Alonso Gustavo1,Hoefler Torsten1

Affiliation:

1. ETH Zurich

Abstract

Traditional database operators such as joins are relevant not only in the context of database engines but also as a building block in many computational and machine learning algorithms. With the advent of big data, there is an increasing demand for efficient join algorithms that can scale with the input data size and the available hardware resources. In this paper, we explore the implementation of distributed join algorithms in systems with several thousand cores connected by a low-latency network as used in high performance computing systems or data centers. We compare radix hash join to sort-merge join algorithms and discuss their implementation at this scale. In the paper, we explain how to use MPI to implement joins, show the impact and advantages of RDMA, discuss the importance of network scheduling, and study the relative performance of sorting vs. hashing. The experimental results show that the algorithms we present scale well with the number of cores, reaching a throughput of 48.7 billion input tuples per second on 4,096 cores.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OLAP on Modern Chiplet-Based Processors;Proceedings of the VLDB Endowment;2024-07

2. So Far and yet so Near - Accelerating Distributed Joins with CXL;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

3. Data Flow Architectures for Data Processing on Modern Hardware;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Data-centric workloads with MPI_Sort;Journal of Parallel and Distributed Computing;2024-05

5. SplitFT: Fault Tolerance for Disaggregated Datacenters via Remote Memory Logging;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3