Low-latency multi-datacenter databases using replicated commit

Author:

Mahmoud Hatem1,Nawab Faisal1,Pucher Alexander1,Agrawal Divyakant1,El Abbadi Amr1

Affiliation:

1. University of California, Santa Barbara, CA

Abstract

Web service providers have been using NoSQL datastores to provide scalability and availability for globally distributed data at the cost of sacrificing transactional guarantees. Recently, major web service providers like Google have moved towards building storage systems that provide ACID transactional guarantees for globally distributed data. For example, the newly published system, Spanner, uses Two-Phase Commit and Two-Phase Locking to provide atomicity and isolation for globally distributed data, running on top of Paxos to provide fault-tolerant log replication. We show in this paper that it is possible to provide the same ACID transactional guarantees for multi-datacenter databases with fewer cross-datacenter communication trips, compared to replicated logging. Instead of replicating the transactional log, we replicate the commit operation itself, by running Two-Phase Commit multiple times in different datacenters and using Paxos to reach consensus among datacenters as to whether the transaction should commit. Doing so not only replaces several inter-datacenter communication trips with intra-datacenter communication trips, but also allows us to integrate atomic commitment and isolation protocols with consistent replication protocols to further reduce the number of cross-datacenter communication trips needed for consistent replication; for example, by eliminating the need for an election phase in Paxos. We analyze our approach in terms of communication trips to compare it against the log replication approach, then we conduct an extensive experimental study to compare the performance and scalability of both approaches under various multi-datacenter setups.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Commitment for Geo-Distributed Transactions via Decentralized Co-Coordinators;Proceedings of the VLDB Endowment;2024-06

2. Caching in Forschung und Industrie;Schnelles und skalierbares Cloud-Datenmanagement;2024

3. Caerus: Low-Latency Distributed Transactions for Geo-Replicated Systems;Proceedings of the VLDB Endowment;2023-11

4. OMAHA: Opportunistic Message Aggregation for pHase-based Algorithms;2023 IEEE 28th Pacific Rim International Symposium on Dependable Computing (PRDC);2023-10-24

5. OceanBase Paetica: A Hybrid Shared-Nothing/Shared-Everything Database for Supporting Single Machine and Distributed Cluster;Proceedings of the VLDB Endowment;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3