Affiliation:
1. Hong Kong University of Science and Technology, Hong Kong, China
2. University of Texas Rio Grande Valley, Texas
3. Xi'an Jiaotong University, Shaanxi, China
Abstract
With the rapid development of mobile devices and the crowdsourcing platforms, the spatial crowdsourcing has attracted much attention from the database community, specifically, spatial crowdsourcing refers to sending a location-based request to workers according to their positions. In this paper, we consider an important spatial crowdsourcing problem, namely
reliable diversity-based spatial crowdsourcing
(RDB-SC), in which spatial tasks (such as taking videos/photos of a landmark or firework shows, and checking whether or not parking spaces are available) are time-constrained, and workers are moving towards some directions. Our RDB-SC problem is to assign workers to spatial tasks such that the completion reliability and the spatial/temporal diversities of spatial tasks are maximized. We prove that the RDB-SC problem is NP-hard and intractable. Thus, we propose three effective approximation approaches, including greedy, sampling, and divide-and-conquer algorithms. In order to improve the efficiency, we also design an effective cost-model-based index, which can dynamically maintain moving workers and spatial tasks with low cost, and efficiently facilitate the retrieval of RDB-SC answers. Through extensive experiments, we demonstrate the efficiency and effectiveness of our proposed approaches over both real and synthetic datasets.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献