Distributed socialite

Author:

Seo Jiwon1,Park Jongsoo2,Shin Jaeho1,Lam Monica S.1

Affiliation:

1. Stanford University

2. Intel Corporation

Abstract

Large-scale graph analysis is becoming important with the rise of world-wide social network services. Recently in SociaLite, we proposed extensions to Datalog to efficiently and succinctly implement graph analysis programs on sequential machines. This paper describes novel extensions and optimizations of SociaLite for parallel and distributed executions to support large-scale graph analysis. With distributed SociaLite, programmers simply annotate how data are to be distributed, then the necessary communication is automatically inferred to generate parallel code for cluster of multi-core machines. It optimizes the evaluation of recursive monotone aggregate functions using a delta stepping technique. In addition, approximate computation is supported in SociaLite, allowing programmers to trade off accuracy for less time and space. We evaluated SociaLite with six core graph algorithms used in many social network analyses. Our experiment with 64 Amazon EC2 8-core instances shows that SociaLite programs performed within a factor of two with respect to ideal weak scaling. Compared to optimized Giraph, an open-source alternative of Pregel, SociaLite programs are 4 to 12 times faster across benchmark algorithms, and 22 times more succinct on average. As a declarative query language, SociaLite, with the help of a compiler that generates efficient parallel and approximate code, can be used easily to create many social apps that operate on large-scale distributed graphs.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Datalog over Semirings: A Grounding-based Approach;Proceedings of the ACM on Management of Data;2024-05-10

2. Communication-Avoiding Recursive Aggregation;2023 IEEE International Conference on Cluster Computing (CLUSTER);2023-10-31

3. Bring Your Own Data Structures to Datalog;Proceedings of the ACM on Programming Languages;2023-10-16

4. Sage;Proceedings of the VLDB Endowment;2022-09

5. Materialisation and data partitioning algorithms for distributed RDF systems;Journal of Web Semantics;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3