Anti-caching

Author:

DeBrabant Justin1,Pavlo Andrew1,Tu Stephen2,Stonebraker Michael2,Zdonik Stan1

Affiliation:

1. Brown University

2. MIT CSAIL

Abstract

The traditional wisdom for building disk-based relational database management systems (DBMS) is to organize data in heavily-encoded blocks stored on disk, with a main memory block cache. In order to improve performance given high disk latency, these systems use a multi-threaded architecture with dynamic record-level locking that allows multiple transactions to access the database at the same time. Previous research has shown that this results in substantial overhead for on-line transaction processing (OLTP) applications [15]. The next generation DBMSs seek to overcome these limitations with architecture based on main memory resident data. To overcome the restriction that all data fit in main memory, we propose a new technique, called anti-caching, where cold data is moved to disk in a transactionally-safe manner as the database grows in size. Because data initially resides in memory, an anti-caching architecture reverses the traditional storage hierarchy of disk-based systems. Main memory is now the primary storage device. We implemented a prototype of our anti-caching proposal in a high-performance, main memory OLTP DBMS and performed a series of experiments across a range of database sizes, workload skews, and read/write mixes. We compared its performance with an open-source, disk-based DBMS optionally fronted by a distributed main memory cache. Our results show that for higher skewed workloads the anti-caching architecture has a performance advantage over either of the other architectures tested of up to 9× for a data size 8× larger than memory.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction and Online Control for Process Parameters of Vanadium Nitrogen Alloys Production Based on Digital Twin;Sustainability;2024-08-30

2. Bf-Tree: A Modern Read-Write-Optimized Concurrent Larger-Than-Memory Range Index;Proceedings of the VLDB Endowment;2024-07

3. Agile-Ant: Self-Managing Distributed Cache Management for Cost Optimization of Big Data Applications;Proceedings of the VLDB Endowment;2024-07

4. Amazon MemoryDB: A Fast and Durable Memory-First Cloud Database;Companion of the 2024 International Conference on Management of Data;2024-06-09

5. Optimizing Differential Computation for Large-Scale Graph Processing;Proceedings of the 7th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA);2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3