The PGM-index

Author:

Ferragina Paolo1,Vinciguerra Giorgio1

Affiliation:

1. University of Pisa, Italy

Abstract

We present the first learned index that supports predecessor, range queries and updates within provably efficient time and space bounds in the worst case. In the (static) context of just predecessor and range queries these bounds turn out to be optimal. We call this learned index the Piecewise Geometric Model index (PGM-index). Its flexible design allows us to introduce three variants which are novel in the context of learned data structures. The first variant of the PGM-index is able to adapt itself to the distribution of the query operations, thus resulting in the first known distribution-aware learned index to date. The second variant exploits the repetitiveness possibly present at the level of the learned models that compose the PGM-index to further compress its succinct space footprint. The third one is a multicriteria variant of the PGM-index that efficiently auto-tunes itself in a few seconds over hundreds of millions of keys to satisfy space-time constraints which evolve over time across users, devices and applications. These theoretical achievements are supported by a large set of experimental results on known datasets which show that the fully-dynamic PGM-index improves the space occupancy of existing traditional and learned indexes by up to three orders of magnitude, while still achieving their same or even better query and update time efficiency. As an example, in the static setting of predecessor and range queries, the PGM-index matches the query performance of a cache-optimised static B+-tree within two orders of magnitude (83×) less space; whereas in the fully-dynamic setting, where insertions and deletions are allowed, the PGM-index improves the query and update time performance of a B + -tree by up to 71% within three orders of magnitude (1140×) less space.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OnionDisk: A Log-Structured Write-Optimal Virtual Block Device;Proceedings of the 15th ACM SIGOPS Asia-Pacific Workshop on Systems;2024-09-04

2. Geospatial indexing for sea–land navigation based on machine learning;Computers and Electrical Engineering;2024-09

3. Kanva: A Lock-free Learned Search Data Structure;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

4. Revisiting Learned Index with Byte-addressable Persistent Storage;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

5. A Survey of Multi-Dimensional Indexes: Past and Future Trends;IEEE Transactions on Knowledge and Data Engineering;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3