TOD

Author:

Zhao Yue1,Chen George H.1,Jia Zhihao1

Affiliation:

1. Carnegie Mellon University

Abstract

Outlier detection (OD) is a key machine learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection. In this work, we propose TOD, the first tensor-based system for efficient and scalable outlier detection on distributed multi-GPU machines. A key idea behind TOD is decomposing complex OD applications into a small collection of basic tensor algebra operators. This decomposition enables TOD to accelerate OD computations by leveraging recent advances in deep learning infrastructure in both hardware and software. Moreover, to deploy memory-intensive OD applications on modern GPUs with limited on-device memory, we introduce two key techniques. First, provable quantization speeds up OD computations and reduces its memory footprint by automatically performing specific floating-point operations in lower precision while provably guaranteeing no accuracy loss. Second, to exploit the aggregated compute resources and memory capacity of multiple GPUs, we introduce automatic batching , which decomposes OD computations into small batches for both sequential execution on a single GPU and parallel execution across multiple GPUs. TOD supports a diverse set of OD algorithms. Evaluation on 11 real-world and 3 synthetic OD datasets shows that TOD is on average 10.9X faster than the leading CPU-based OD system PyOD (with a maximum speedup of 38.9X), and can handle much larger datasets than existing GPU-based OD systems. In addition, TOD allows easy integration of new OD operators, enabling fast prototyping of emerging and yet-to-discovered OD algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference105 articles.

1. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , Manjunath Kudlur , Josh Levenberg , Rajat Monga , Sherry Moore , Derek Gordon Murray , Benoit Steiner , Paul A. Tucker , Vijay Vasudevan , Pete Warden , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016 . TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016 , Savannah, GA, USA, November 2--4 , 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Association, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2--4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Association, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

2. Ahmed Abdulaal , Zhuanghua Liu , and Tomer Lancewicki . 2021 . Practical approach to asynchronous multivariate time series anomaly detection and localization . In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, 2485--2494 . Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. 2021. Practical approach to asynchronous multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, 2485--2494.

3. Elke Achtert , Hans-Peter Kriegel , Lisa Reichert , Erich Schubert , Remigius Wojdanowski , and Arthur Zimek . 2010. Visual Evaluation of Outlier Detection Models . In Database Systems for Advanced Applications, 15th International Conference, DASFAA 2010 , Tsukuba, Japan, April 1--4, 2010, Proceedings, Part II (Lecture Notes in Computer Science), Hiroyuki Kitagawa, Yoshiharu Ishikawa, Qing Li, and Chiemi Watanabe (Eds.), Vol. 5982 . Springer , 396--399. 10.1007/978-3-642-12098-5_34 Elke Achtert, Hans-Peter Kriegel, Lisa Reichert, Erich Schubert, Remigius Wojdanowski, and Arthur Zimek. 2010. Visual Evaluation of Outlier Detection Models. In Database Systems for Advanced Applications, 15th International Conference, DASFAA 2010, Tsukuba, Japan, April 1--4, 2010, Proceedings, Part II (Lecture Notes in Computer Science), Hiroyuki Kitagawa, Yoshiharu Ishikawa, Qing Li, and Chiemi Watanabe (Eds.), Vol. 5982. Springer, 396--399. 10.1007/978-3-642-12098-5_34

4. Charu C. Aggarwal . 2013. Outlier Analysis . Springer . Charu C. Aggarwal. 2013. Outlier Analysis. Springer.

5. Charu C Aggarwal , Yuchen Zhao , and S Yu Philip . 2011 . Outlier detection in graph streams . In 2011 IEEE 27th international conference on data engineering. IEEE, IEEE, 399--409 . Charu C Aggarwal, Yuchen Zhao, and S Yu Philip. 2011. Outlier detection in graph streams. In 2011 IEEE 27th international conference on data engineering. IEEE, IEEE, 399--409.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3