Jaql

Author:

Beyer Kevin S.1,Ercegovac Vuk1,Gemulla Rainer2,Balmin Andrey1,Eltabakh Mohamed3,Kanne Carl-Christian1,Ozcan Fatma1,Shekita Eugene J.1

Affiliation:

1. IBM Research - Almaden

2. Max-Planck-Institut für Informatik, Saarbrücken, Germany

3. Worcester Polytechnic Institute (WPI)

Abstract

This paper describes Jaql, a declarative scripting language for analyzing large semistructured datasets in parallel using Hadoop's MapReduce framework. Jaql is currently used in IBM's InfoSphere BigInsights [5] and Cognos Consumer Insight [9] products. Jaql's design features are: (1) a flexible data model, (2) reusability, (3) varying levels of abstraction, and (4) scalability. Jaql's data model is inspired by JSON and can be used to represent datasets that vary from flat, relational tables to collections of semistructured documents. A Jaql script can start without any schema and evolve over time from a partial to a rigid schema. Reusability is provided through the use of higher-order functions and by packaging related functions into modules. Most Jaql scripts work at a high level of abstraction for concise specification of logical operations (e.g., join), but Jaql's notion of physical transparency also provides a lower level of abstraction if necessary. This allows users to pin down the evaluation plan of a script for greater control or even add new operators. The Jaql compiler automatically rewrites Jaql scripts so they can run in parallel on Hadoop. In addition to describing Jaql's design, we present the results of scale-up experiments on Hadoop running Jaql scripts for intranet data analysis and log processing.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ReCG: Bottom-up JSON Schema Discovery Using a Repetitive Cluster-and-Generalize Framework;Proceedings of the VLDB Endowment;2024-07

2. Addressing the Nested Data Processing Gap: JSONiq Queries on Snowflake Through Snowpark;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. GIO: Generating Efficient Matrix and Frame Readers for Custom Data Formats by Example;Proceedings of the ACM on Management of Data;2023-06-13

4. Multi-model query languages: taming the variety of big data;Distributed and Parallel Databases;2023-05-31

5. dsJSON: A Distributed SQL JSON Processor;Proceedings of the ACM on Management of Data;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3