Splitter

Author:

Zhang Chao1,Han Jiawei1,Shou Lidan2,Lu Jiajun3,La Porta Thomas4

Affiliation:

1. University of Illinois, Urbana-Champaign, Urbana, IL

2. Zhejiang University, China

3. University of Illinois at Urbana-Champaign, Urbana, IL

4. Penn State University, PA

Abstract

Driven by the advance of positioning technology and the popularity of location-sharing services, semantic-enriched trajectory data have become unprecedentedly available. The sequential patterns hidden in such data, when properly defined and extracted, can greatly benefit tasks like targeted advertising and urban planning. Unfortunately, classic sequential pattern mining algorithms developed for transactional data cannot effectively mine patterns in semantic trajectories, mainly because the places in the continuous space cannot be regarded as independent "items". Instead, similar places need to be grouped to collaboratively form frequent sequential patterns. That said, it remains a challenging task to mine what we call fine-grained sequential patterns , which must satisfy spatial compactness, semantic consistency and temporal continuity simultaneously. We propose Splitter to effectively mine such fine-grained sequential patterns in two steps. In the first step, it retrieves a set of spatially coarse patterns, each attached with a set of trajectory snippets that precisely record the pattern's occurrences in the database. In the second step, Splitter breaks each coarse pattern into fine-grained ones in a top-down manner, by progressively detecting dense and compact clusters in a higher-dimensional space spanned by the snippets. Splitter uses an effective algorithm called weighted snippet shift to detect such clusters, and leverages a divide-and-conquer strategy to speed up the top-down pattern splitting process. Our experiments on both real and synthetic data sets demonstrate the effectiveness and efficiency of Splitter.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3