A Shapelet-Based Framework for Unsupervised Multivariate Time Series Representation Learning

Author:

Liang Zhiyu1,Zhang Jianfeng2,Liang Chen1,Wang Hongzhi1,Liang Zheng1,Pan Lujia2

Affiliation:

1. Harbin Institute of Technology, Harbin, China

2. Huawei Noah's Ark Lab, Shenzhen, China

Abstract

Recent studies have shown great promise in unsupervised representation learning (URL) for multivariate time series, because URL has the capability in learning generalizable representation for many downstream tasks without using inaccessible labels. However, existing approaches usually adopt the models originally designed for other domains (e.g., computer vision) to encode the time series data and rely on strong assumptions to design learning objectives, which limits their ability to perform well. To deal with these problems, we propose a novel URL framework for multivariate time series by learning time-series-specific shapelet-based representation through a popular contrasting learning paradigm. To the best of our knowledge, this is the first work that explores the shapelet-based embedding in the unsupervised general-purpose representation learning. A unified shapelet-based encoder and a novel learning objective with multi-grained contrasting and multi-scale alignment are particularly designed to achieve our goal, and a data augmentation library is employed to improve the generalization. We conduct extensive experiments using tens of real-world datasets to assess the representation quality on many downstream tasks, including classification, clustering, and anomaly detection. The results demonstrate the superiority of our method against not only URL competitors, but also techniques specially designed for downstream tasks. Our code has been made publicly available at https://github.com/real2fish/CSL.

Publisher

Association for Computing Machinery (ACM)

Reference66 articles.

1. Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. 2013. Deep canonical correlation analysis. In International conference on machine learning. PMLR, 1247--1255.

2. Time Series Machine Learning Website;Bagnall Anthony

3. Anthony J. Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn J. Keogh. 2018. The UEA multivariate time series classification archive, 2018. CoRR abs/1811.00075 (2018). arXiv:1811.00075 http://arxiv.org/abs/1811.00075

4. Stefanos Bennett Mihai Cucuringu and Gesine Reinert. 2022. Detection and clustering of lead-lag networks for multivariate time series with an application to financial markets. (2022).

5. Aaron Bostrom and Anthony Bagnall. 2017. Binary shapelet transform for multiclass time series classification. In Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXII. Springer, 24--46.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UniTS: A Universal Time Series Analysis Framework Powered by Self-Supervised Representation Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3