Zebra: When Temporal Graph Neural Networks Meet Temporal Personalized PageRank

Author:

Li Yiming1,Shen Yanyan2,Chen Lei3,Yuan Mingxuan4

Affiliation:

1. Department of CSE, HKUST

2. Department of CSE, Shanghai Jiao Tong University

3. Department of CSE, HKUST DSA Thrust, HKUST (GZ)

4. Huawei Noah's Ark Lab

Abstract

Temporal graph neural networks (T-GNNs) are state-of-the-art methods for learning representations over dynamic graphs. Despite the superior performance, T-GNNs still suffer from high computational complexity caused by the tedious recursive temporal message passing scheme, which hinders their applicability to large dynamic graphs. To address the problem, we build the theoretical connection between the temporal message passing scheme adopted by T-GNNs and the temporal random walk process on dynamic graphs. Our theoretical analysis indicates that it would be possible to select a few influential temporal neighbors to compute a target node's representation without compromising the predictive performance. Based on this finding, we propose to utilize T-PPR, a parameterized metric for estimating the influence score of nodes on evolving graphs. We further develop an efficient single-scan algorithm to answer the top- k T-PPR query with rigorous approximation guarantees. Finally, we present Zebra, a scalable framework that accelerates the computation of T-GNN by directly aggregating the features of the most prominent temporal neighbors returned by the top- k T-PPR query. Extensive experiments have validated that Zebra can be up to two orders of magnitude faster than the state-of-the-art T-GNNs while attaining better performance.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference60 articles.

1. [2023]. AskUbuntu. http://snap.stanford.edu/data/sx-askubuntu.html. [2023]. AskUbuntu. http://snap.stanford.edu/data/sx-askubuntu.html.

2. [2023]. SuperUser. http://snap.stanford.edu/data/sx-superuser.html. [2023]. SuperUser. http://snap.stanford.edu/data/sx-superuser.html.

3. [2023]. The technical report. https://github.com/LuckyLYM/Zebra/blob/main/technical_report.pdf. [2023]. The technical report. https://github.com/LuckyLYM/Zebra/blob/main/technical_report.pdf.

4. [2023]. Wiki-talk. http://snap.stanford.edu/data/wiki-talk-temporal.html. [2023]. Wiki-talk. http://snap.stanford.edu/data/wiki-talk-temporal.html.

5. Local Computation of PageRank Contributions

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DGNN-MN: Dynamic Graph Neural Network via memory regenerate and neighbor propagation;Applied Intelligence;2024-07-12

2. Enabling Window-Based Monotonic Graph Analytics with Reusable Transitional Results for Pattern-Consistent Queries;Proceedings of the VLDB Endowment;2024-07

3. TimeSGN: Scalable and Effective Temporal Graph Neural Network;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Search to Fine-Tune Pre-Trained Graph Neural Networks for Graph-Level Tasks;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Breaking the Entanglement of Homophily and Heterophily in Semi-supervised Node Classification;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3