Retrofitting GDPR compliance onto legacy databases

Author:

Agarwal Archita1,George Marilyn2,Jeyaraj Aaron2,Schwarzkopf Malte2

Affiliation:

1. Denison University

2. Brown University

Abstract

New privacy laws like the European Union's General Data Protection Regulation (GDPR) require database administrators (DBAs) to identify all information related to an individual on request, e.g. , to return or delete it. This requires time-consuming manual labor today, particularly for legacy schemas and applications. In this paper, we investigate what it takes to provide mostly-automated tools that assist DBAs in GDPR-compliant data extraction for legacy databases. We find that a combination of techniques is needed to realize a tool that works for the databases of real-world applications, such as web applications, which may violate strict normal forms or encode data relationships in bespoke ways. Our tool, GDPRizer, relies on foreign keys, query logs that identify implied relationships, data-driven methods, and coarse-grained annotations provided by the DBA to extract an individual's data. In a case study with three popular web applications, GDPRizer achieves 100% precision and 96--100% recall. GDPRizer saves work compared to hand-written queries, and while manual verification of its outputs is required, GDPRizer simplifies privacy compliance.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference45 articles.

1. The Web framework for perfectionists with deadlines | Django . URL https://www.djangoproject.com/. Accessed 13 Dec. 2021 . The Web framework for perfectionists with deadlines | Django. URL https://www.djangoproject.com/. Accessed 13 Dec. 2021.

2. The Hacker News . URL https://thehackernews.com/. Accessed 13 Dec. 2021 . The Hacker News. URL https://thehackernews.com/. Accessed 13 Dec. 2021.

3. moz-sql-parser - SQL query parser. URL https://github.com/mozilla/moz-sql-parser. Accessed 13 Dec. 2021 . moz-sql-parser - SQL query parser. URL https://github.com/mozilla/moz-sql-parser. Accessed 13 Dec. 2021.

4. Reddit. URL https://www.reddit.com/. Accessed 13 Dec. 2021 . Reddit. URL https://www.reddit.com/. Accessed 13 Dec. 2021.

5. Ruby on Rails . URL https://rubyonrails.org/. Accessed 13 Dec. 2021 . Ruby on Rails. URL https://rubyonrails.org/. Accessed 13 Dec. 2021.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disposable identities: Solving web tracking;Journal of Information Security and Applications;2024-08

2. SoK: Technical Implementation and Human Impact of Internet Privacy Regulations;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

3. Enhancing AI System Privacy: An Automatic Tool for Achieving GDPR Compliance in NoSQL Databases;Computers, Materials & Continua;2024

4. Data-CASE: Grounding Data Regulations for Compliant Data Processing Systems;SSRN Electronic Journal;2024

5. Toward a Universal and Sustainable Privacy Protection Framework;Digital Government: Research and Practice;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3