1. Deep Learning with Differential Privacy
2. M. Al-Shedivat , J. Gillenwater , E. Xing , and A. Rostamizadeh . Federated learning via posterior averaging: A new perspective and practical algorithms. arXiv preprint arXiv:2010.05273 , 2020 . M. Al-Shedivat, J. Gillenwater, E. Xing, and A. Rostamizadeh. Federated learning via posterior averaging: A new perspective and practical algorithms. arXiv preprint arXiv:2010.05273, 2020.
3. Heterogeneous differential privacy;Alaggan M.;J. Priv. Confidentiality,2016
4. A. Bellet , R. Guerraoui , M. Taziki , and M. Tommasi . Personalized and private peer-to-peer machine learning . In International Conference on Artificial Intelligence and Statistics , pages 473 -- 481 . PMLR, 2018 . A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi. Personalized and private peer-to-peer machine learning. In International Conference on Artificial Intelligence and Statistics, pages 473--481. PMLR, 2018.
5. The Johnson-Lindenstrauss Transform Itself Preserves Differential Privacy