An efficient reconciliation algorithm for social networks

Author:

Korula Nitish1,Lattanzi Silvio1

Affiliation:

1. Google Inc., New York, NY

Abstract

People today typically use multiple online social networks (Facebook, Twitter, Google+, LinkedIn, etc.). Each online network represents a subset of their "real" ego-networks. An interesting and challenging problem is to reconcile these online networks, that is, to identify all the accounts belonging to the same individual. Besides providing a richer understanding of social dynamics, the problem has a number of practical applications. At first sight, this problem appears algorithmically challenging. Fortunately, a small fraction of individuals explicitly link their accounts across multiple networks; our work leverages these connections to identify a very large fraction of the network. Our main contributions are to mathematically formalize the problem for the first time, and to design a simple, local, and efficient parallel algorithm to solve it. We are able to prove strong theoretical guarantees on the algorithm's performance on well-established network models (Random Graphs, Preferential Attachment). We also experimentally confirm the effectiveness of the algorithm on synthetic and real social network data sets.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attributed Graph Alignment;IEEE Transactions on Information Theory;2024-08

2. Collaborative Cross-Network Embedding Framework for Network Alignment;IEEE Transactions on Network Science and Engineering;2024-05

3. On the Feasible Region of Efficient Algorithms for Attributed Graph Alignment;IEEE Transactions on Information Theory;2024-05

4. Statistical Limits for Testing Correlation of Random Hypergraphs;Latin American Journal of Probability and Mathematical Statistics;2024

5. Data Stream Processing in Reconciliation Testing: Industrial Experience;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3