DOCS

Author:

Zheng Yudian1,Li Guoliang2,Cheng Reynold1

Affiliation:

1. The University of Hong Kong

2. Tsinghua University

Abstract

Crowdsourcing is a new computing paradigm that harnesses human effort to solve computer-hard problems, such as entity resolution and photo tagging. The crowd (or workers) have diverse qualities and it is important to effectively model a worker's quality. Most of existing worker models assume that workers have the same quality on different tasks. In practice, however, tasks belong to a variety of diverse domains, and workers have different qualities on different domains. For example, a worker who is a basketball fan should have better quality for the task of labeling a photo related to ' Stephen Curry ' than the one related to ' Leonardo DiCaprio '. In this paper, we study how to leverage domain knowledge to accurately model a worker's quality. We examine using knowledge base (KB), e.g., Wikipedia and Freebase, to detect the domains of tasks and workers. We develop Domain Vector Estimation , which analyzes the domains of a task with respect to the KB. We also study Truth Inference , which utilizes the domain-sensitive worker model to accurately infer the true answer of a task. We design an Online Task Assignment algorithm, which judiciously and efficiently assigns tasks to appropriate workers. To implement these solutions, we have built DOCS, a system deployed on the Amazon Mechanical Turk. Experiments show that DOCS performs much better than the state-of-the-art approaches.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RCTD: Reputation-Constrained Truth Discovery in Sybil Attack Crowdsourcing Environment;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. CrowdDA: Difficulty-aware crowdsourcing task optimization for cleaning web tables;Expert Systems with Applications;2024-03

3. Towards Relevance and Diversity in Crowdsourcing Worker Recruitment With Insufficient Information;IEEE Transactions on Network Science and Engineering;2024-01

4. Joint Data Collection and Truth Inference in Spatial Crowdsourcing;Wireless Networks;2023

5. A Domain-Aware Crowdsourcing System with Copier Removal;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3