Scaling Package Queries to a Billion Tuples via Hierarchical Partitioning and Customized Optimization

Author:

Mai Anh L.1,Wang Pengyu1,Abouzied Azza1,Brucato Matteo2,Haas Peter J.3,Meliou Alexandra3

Affiliation:

1. New York University Abu Dhabi

2. Microsoft Research

3. University of Massachusetts Amherst

Abstract

A package query returns a package---a multiset of tuples---that maximizes or minimizes a linear objective function subject to linear constraints, thereby enabling in-database decision support. Prior work has established the equivalence of package queries to Integer Linear Programs (ILPs) and developed the SketchRefine algorithm for package query processing. While this algorithm was an important first step toward supporting prescriptive analytics scalably inside a relational database, it struggles when the data size grows beyond a few hundred million tuples or when the constraints become very tight. In this paper, we present Progressive Shading, a novel algorithm for processing package queries that can scale efficiently to billions of tuples and gracefully handle tight constraints. Progressive Shading solves a sequence of optimization problems over a hierarchy of relations, each resulting from an ever-finer partitioning of the original tuples into homogeneous groups until the original relation is obtained. This strategy avoids the premature discarding of high-quality tuples that can occur with SketchRefine. Our novel partitioning scheme, Dynamic Low Variance, can handle very large relations with multiple attributes and can dynamically adapt to both concentrated and spread-out sets of attribute values, provably outperforming traditional partitioning schemes such as kd-tree. We further optimize our system by replacing our off-the-shelf optimization software with customized ILP and LP solvers, called Dual Reducer and Parallel Dual Simplex respectively, that are highly accurate and orders of magnitude faster.

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counterfactual Explanation at Will, with Zero Privacy Leakage;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3