Efficient and effective algorithms for clustering uncertain graphs

Author:

Han Kai1,Gui Fei2,Xiao Xiaokui2,Tang Jing2,He Yuntian1,Cao Zongmai1,Huang He3

Affiliation:

1. University of Science and Technology of China

2. National University of Singapore

3. Soochow University

Abstract

We consider the edge uncertainty in an undirected graph and study the k -median (resp. k -center) problems, where the goal is to partition the graph nodes into k clusters such that the average (resp. minimum) connection probability between each node and its cluster's center is maximized. We analyze the hardness of these problems, and propose algorithms that provide considerably improved approximation guarantees than the existing studies do. Specifically, our algorithms offer (1 -- 1/e)-approximations for the k -median problem and (OPTck)-approximations for the k -center problem, where OPTck is the optimal objective function value for k -center. In addition, our algorithms incorporate several non-trivial optimizations that significantly enhance their practical efficiency. Extensive experimental results demonstrate that our algorithms considerably outperform the existing methods on both computation efficiency and the quality of clustering results.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cross-Domain Perspective to Clustering with Uncertainty;Lecture Notes in Computer Science;2024

2. USIWO: A Local Community Search Algorithm for Uncertain Graphs;Proceedings of the International Conference on Advances in Social Networks Analysis and Mining;2023-11-06

3. Scaling Up Structural Clustering to Large Probabilistic Graphs Using Lyapunov Central Limit Theorem;Proceedings of the VLDB Endowment;2023-07

4. Shortest Paths Discovery in Uncertain Networks via Transfer Learning;Proceedings of the ACM on Management of Data;2023-06-13

5. Most Probable Densest Subgraphs;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3