An assessment of forest restoration after fie using segmentation and cluster analysis of Landsat images

Author:

Rozhkov Yu. F.1,Kondakova M. Yu.2

Affiliation:

1. State Nature Reserve» Olyokminsky «

2. Hydrochemical Institute

Abstract

For the purposes of monitoring the state of forest ecosystems, it is most effctive to use the capabilities of remote methods. Fragments with an area of 250 km2 (scale 1:5000) were identifid on Landsat multispectral satellite images (time series of summer images for 1995, 2000, 2004, 2008, 2013, 2016) of the Olyokminsky State Nature Reserve. Then polygons were saved at three levels of segmentation: 4, 16, 64 with the scales of 1:2500, 1:1250, 1:625. When deciphering, an unmanaged classifiation of polygons was carried out using the ISODATA method (Iterative Self-Organizing Data Analysis Technigue) into 2, 4, 10 classes. Distribution curves for the values of the forest cover index for polygons of the 3rd level of segmentation were constructed. The results of classifiation into 4 classes were used to calculate the thematic pixel diffrence. According to the classification results for 4.10 classes, statistical processing was carried out with the calculation of the diffrence and similarity indicators of polygons, the dispersion of the general population and the Fisher test (F-test). A method is described for determining the disturbance of ecosystems and their restoration from the distribution curves of the forest cover index. The results of the change in the dispersion of the general population and the F-test at diffrent levels of segmentation and at diffrent stages of forest restoration are considered. The features of the transition between three levels of self-similarity (scaling) of multifractal structures as forests are restored are determined.

Publisher

North-Eastern Federal University

Reference23 articles.

1. Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody / pod redaktsiei A. S. Isaeva. – Tekst: neposredstvennyi // Tsentr po problemam ekologii i produktivnosti lesov RAN. – M.: Nauka, 2008. – 453 p.

2. Isaev A.S., Knyazeva S.V., Puzachenko M.Yu. et al. Ispol’zovanie sputnikovykh dannykh dlya monitoringa bioraznoobraziya lesov // Issledovanie Zemli iz kosmosa. – 2009. No 2.- P. 1-12.

3. Tolkach I.V. Metody osnovnykh taksatsionno-deshifrovochnykh pokazatelei na tsifrovykh snimkakh//Trudy BGTU. – 2012. No 1.- P.63-65.

4. Malysheva N.V. Deshifrirovanie drevesnoi rastitel’nosti na sverkh detal’nykh izobrazheniyakh [Elektronnyi resurs]: metodicheskoe posobie: uchebnoe elektronnoe izdanie. – FGBOU VPO MGUL: Moskow, 2014. 40p.

5. Terekhin E. A. Sezonnaya dinamika proektivnogo pokrytiya rastitel’nosti agroekosistem na osnove spektral’noi sputnikovoi informatsii // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. V. 16. No 4.- P. 111–123

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An assessment of seasonal changes in forests using the segmentation and cluster analysis of Landsat space images;Vestnik of North-Eastern Federal University Series "Earth Sciences";2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3